Volver a Guía
Ir al curso
@Magdalena Hola magda! Te tiene que dar cero sí, subime foto de lo que estás haciendo o revisá las cuentas a ver dónde está el error.
0
Responder
@Julieta ahi creo q esta, me daba un numero sobre cero, entonces quedaria infinito, esta bien?
0
Responder
@Candelaria Hola! Miralas en el video de dominio de funciones que es super importantes que las sepas bien
0
Responder
CURSO RELACIONADO
Matemática 51
2025
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
MATEMÁTICA 51 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
9.
Hallar el dominio, los intervalos de crecimiento y de decrecimiento, los extremos locales y el valor de la función en los mismos. Determinar las asíntotas verticales y horizontales. Hacer un gráfico aproximado de $f$.
d) $f(x)=\frac{8-3 x}{x^{2}-2 x}$
d) $f(x)=\frac{8-3 x}{x^{2}-2 x}$
Respuesta
Bueno, vamos por partes.. Preparate el mate o un café porque es un poquito largo. ¡Vamos!
Reportar problema
1. Calculemos el dominio de la función
\( f(x) \) no está definida cuando el denominador es cero, porque tenemos una división con $x$, tal como vimos en el video de dominio de funciones.
$ x^2 - 2x = 0 $
Factorizando por factor común, obtenemos:
$ x(x - 2) = 0 $
\( x = 0 \) y \( x = 2 \).
$ \text{Dom}(f) = \mathbb{R} - \{0, 2\} $
Sí, ya sé, capaz voy despejaste la $x$ y te dio lo mismo, está bien, es otra forma de hacerlo 😊
2. Hallamos la derivada de la función
$ f(x) = \frac{8 - 3x}{x^2 - 2x} $
$ f'(x) = \frac{(-3)(x^2 - 2x) - (8 - 3x)(2x - 2)}{(x^2 - 2x)^2} $
$ f'(x) = \frac{-3x^2 + 6x - (16x - 16 - 6x^2 + 6x)}{(x^2 - 2x)^2} $
$ f'(x) = \frac{-3x^2 + 6x - 16x + 16 + 6x^2 - 6x}{(x^2 - 2x)^2} $
$ f'(x) = \frac{3x^2 - 16x + 16}{(x^2 - 2x)^2} $
3. Buscamos los puntos críticos:
3.1. Buscamos los valores del dominio de \( f \) donde la derivada no está definida, comparando los dominios de ambas:
El $ \text{Dom}(f) = \text{Dom}(f') = \Re$. No obtuvimos puntos críticos de acá.
3.2. Buscamos los valores donde la derivada se hace cero:
Igualamos la derivada a cero:
$ 3x^2 - 16x + 16 = 0 $
$ x_1 = 4 $
$ x_2 = \frac{4}{3} $
4. Usamos Bolzano (con el dominio y los PCs) para hallar los intervalos de crecimiento y decrecimiento:
Evaluamos la derivada \( f'(x) \) en cada intervalo:
-> Para \( x \) en Intervalo \( (-\infty, 0) \): \( f'(-1) = \frac{3(-1)^2 - 16(-1) + 16}{((-1)^2 - 2(-1))^2} > 0 \). Es decir que \( f \) crece.
-> Para \( x \) en Intervalo \( (0, \frac{4}{3}) \): \( f'(1) = \frac{3(1)^2 - 16(1) + 16}{((1)^2 - 2(1))^2} > 0 \). Es decir que \( f \) crece.
-> Para \( x \) en Intervalo \( (\frac{4}{3}, 2) \): \( f'(1,5) = \frac{3(1,5)^2 - 16(1,5) + 16}{((1,5)^2 - 2(1,5))^2} < 0 \). Es decir que \( f \) decrece.
-> Para \( x \) en Intervalo \( (2, 4) \): \( f'(3) = \frac{3(3)^2 - 16(3) + 16}{((3)^2 - 2(3))^2} < 0 \). Es decir que \( f \) decrece.
-> Para \( x \) en Intervalo \( (4, +\infty) \): \( f'(6) = \frac{3(6)^2 - 16(6) + 16}{((6)^2 - 2(6))^2} > 0 \). Es decir que \( f \) crece.
5. Evaluamos los máximos y mínimos
Los puntos \( x = \frac{4}{3} \) y \( x =4 \) son puntos críticos. Analizando el cambio de signo de la derivada:
-> \( x = \frac{4}{3} \): Es un máximo relativo ya que \( f'(x) \) pasa de positivo a negativo.
-> \( x = 4 \): Es un mínimo relativo ya que \( f'(x) \) pasa de negativo a positivo.
Podemos hallar las coordenadas del máximos y del mínimo sustituyendo los valores de $x$ en la función \( f(x) \):
$ f\left(\frac{4}{3}\right) = \frac{8 - 3\left(\frac{4}{3}\right)}{\left(\frac{4}{3}\right)^2 - 2\left(\frac{4}{3}\right)} = \frac{8 - 4}{\frac{16}{9} - \frac{8}{3}} = \frac{4}{\frac{16}{9} - \frac{24}{9}} = \frac{4}{\frac{-8}{9}} = -\frac{9}{2} $
$f(4)= \frac{8-3.4}{4^{2}-2.4} = \frac{-4}{8} = -\frac{1}{2}$
6. Asíntotas
6.1 Asíntota vertical:
Hay una asíntota vertical en \( x = 0 \) y en \( x = 2 \) ya que la función no está definida en esos puntos y \( f(x) \) tiende a infinito cuando \( x \) se acerca a 0 y 2.
$ \lim_{x \to 0} \frac{8 - 3x}{x^2 - 2x} = \lim_{x \to 0} \frac{8 - (\rightarrow 0)}{ \rightarrow 0} = \infty $
$ \lim_{x \to 2} \frac{8 - 3x}{x^2 - 2x} = \lim_{x \to 0} \frac{\rightarrow 2}{ \rightarrow 0} = \infty $
Hay asíntota vertical en $x=0$ y en $x=2$
6.2 Asíntota horizontal:
$ \lim_{x \to \infty} \frac{8 - 3x}{x^2 - 2x} = \lim_{x \to \infty} \frac{-3x}{x^2} = \lim_{x \to \infty} \frac{-3}{x} = 0 $
Por lo tanto, la asíntota horizontal es \( y = 0 \).
Respuesta:
Dominio: \( \mathbb{R} - \{0, 2\} \)
Intervalo de crecimiento: \( (-\infty, 0) \cup (0, \frac{4}{3}) \cup (4, +\infty) \)
Intervalo de decrecimiento: \( (\frac{4}{3}, 2) \cup (2, 4) \)
Asíntota vertical: \( x = 0 \) y \( x = 2 \)
Asíntota horizontal: \( y = 0 \)
Máximo relativo en \( x = \frac{4}{3} \) con coordenada \( \left(\frac{4}{3}, -\frac{9}{2}\right) \)
Máximo relativo en \( x = 4 \) con coordenada \( \left(4, -\frac{1}{2}\right) \)
El gráfico quedaría así:

Iniciá sesión o
Registrate para
dejar
tu
comentario.
Comentarios

Magdalena
9 de junio 16:40
holaa, yo cuando planteo el limite de la av en 0, me da 8, no me tendria que dar 0?

Julieta
PROFE
10 de junio 14:43

Magdalena
11 de junio 12:58

Candelaria
1 de noviembre 14:26
El dominio siempre tiene que ser igual a 0? Tenía entendido que a ces es distinto de 0 y no recuerdo cuales eran las reglas para eso

Julieta
PROFE
8 de noviembre 9:39
🤖 ExaBoti
Esta conversación es privada
🤖 ExaBoti (privado)