Volver a Guía
Ir al curso
💡 Si no viste los videos de derivadas por tabla del curso no te recomiendo avanzar con esta guía de ejercicios porque no vas a entender nada jeje. Los videos son clave para entender estos temas. ¡Así que andá y volve que empezamos!
Reportar problema
@Federico Hola, nono eso no estaría bien. porque el 3 estaría multiplicando. Lo que sí estaría bien sería escribirlo así: -sin(x)+3
CURSO RELACIONADO
Matemática 51
2024
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
MATEMÁTICA 51 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
Práctica 5 - Derivadas
1.
Hallar la derivada de la función $f$ usando las reglas de derivación.
a) $f(x)=3 x+\cos (x)$
a) $f(x)=3 x+\cos (x)$
Respuesta
Arrancamos con los temas para el segundo parcial y quiero decirte que no te preocupes si en el primero no te fue muy bien, ya que los temas que entran en el segundo parcial no son muy parecidos a los del primero. Sí vamos a hacer estudio de funciones, así que calcular el dominio de funciones o usar Bolzano va a ser necesario, pero no mucho más que eso. Olvidate de las trigonométricas complicadas, de los conjuntos numéricos, etc. Así que espero que este mensaje te sirva de aliento ¡y te deseo muchos éxitos para esta nueva etapa!💜✨
Bueno, nos piden hallar la derivada de la función $f$ usando las reglas de derivación que ya vimos en los videos: la de la suma y resta, la del producto y la de la división. Sí, te las tenés que aprender de memoria pero te juro que practicando un poquito sale super fácil.
Dada la función $f(x)=3 x+\cos (x)$, vamos a hallar su derivada, es decir $ f'(x)$
Para resolver, como hay una suma, vamos a derivar cada uno de los términos por separado.
1. Para el término lineal $3x$, la derivada es simplemente el coeficiente de $x$, ya que la derivada de $x$ es 1. Por eso la derivada de $3x$ es 3. Acordate lo que te expliqué sobre un número multiplicando a una $x$, el número sobrevive a la derivada.
2. Para el término $\cos(x)$, vimos que la derivada del coseno de $x$ es $-\sin(x)$
Entonces, combinando ambas derivadas, tenemos:
$ f'(x) = (3x)' + (\cos(x))' = 3 - \sin(x) $
Así que la derivada de la función $f(x)=3x+\cos(x)$ es:
$ f'(x) = 3 - \sin(x) $
¡Listo, una papa! En el curso tenés muchos ejemplos en video, incluso vemos bien a fondo las derivadas por tabla más sencillitas, así que si sentís que esto te cuesta, andá. Te lo digo en serio, te va a servir.
ExaComunidad
Iniciá sesión o Registrate para dejar
tu
comentario.
Jazmín
20 de junio 19:03
Justo el mensaje que estaba necesitando♡. Gracias por el incentivo, Juli!
Julieta
PROFE
5 de junio 16:01
0
Responder