Volver al curso
Presión absoluta y manométrica o relativa
Teorema General de la hidrostática - Cuándo usar cada fórmula
Principio de Pascal✨ - Prensa hidráulica
Ejercicio - Unidades de presión
Ejercicio - Cálculo de presión
Ejercicio - Prinicipio de Pascal - Prensa hidráulica que levanta un auto
Ejercicio - Fuerza mínima que hay que aplicar al inyectar un fluido en una vena
Ejercicio - Aplicación del teorema general de hidrostática para el cálculo de la presión en un punto
Ejercicio - Aplicación médica del teorema general de la hidrostática para el cálculo de la altura
13
Acerca del video
ATENCIÓN: En el minuto 2:05 se describen las fueras al revés. Debería decir la fuerza P es una fuerza conservativa, mientras que las fuerzas de tracción F, T (tensiones), Froz, etc. son fuerzas no conservativas.Programa
Unidad 1 - Mecánica
-
CINEMÁTICA
-
Movimiento Rectilineo Uniforme - MRU✨ -
Movimiento Rectilineo Uniforme - MRU - Ejemplo de aplicación✨ -
La clave de esta materia: Conversión de unidades -
Ejercicio - MRU - Análisis de gráfico x(t). Cálculo de velocidad, cálculo de la posición y armado de gráfico v(t). -
Ejercicio - MRU - Análisis de gráficas de posición en función del tiempo: x(t) -
Ejercicio - MRU - Analicemos e identifiquemos MRUs a partir de diferentes gráficas x(t). -
Ejercicio - MRU - Analicemos e identifiquemos MRUs a partir de diferentes gráficas v(t). -
Ejercicio - MRU - Análisis del movimiento -
Movimiento Rectilíneo Uniformemente Variado - MRUV✨ -
Ejercicio - MRUV y MRU ¿Cómo identificar los movimientos en gráficas de posición en función del tiempo -
Ejercicio - MRUV y MRU - Análisis de gráficas de velocidad en función del tiempo -
Ejercicio - MRUV - Análisis completo del movimiento, uso de ecuaciones horarias y creación y análisis de gráficas x(t), v(t) y a(t). -
Ejercicio - Creación de gráficos de a(t) y x(t) a partir del gráfico de v(t). -
Ejercicio - Gráficos de v(t). Diferencia entre velocidad y rapidez. Importancia del sistema de referencia (SR) -
Ejercicio - Análisis de gráficos de v(t) y x(t). Desplazamiento y velocidad media. -
Ejercicio - Integrador de MRU y MRUV. Ecuaciones horarias y gráficas x(t), v(t) y a(t). -
Ejercicio - Encuentro de dos móviles. MRU y MRUV -
Ejercicio - Integrador - MRU y MRUV de un ascensor I -
Ejercicio - Integrador - MRU y MRUV de un ascensor II -
Caída Libre - Tiro Vertical✨ -
Ejercicio - Integrador tiro vertical. Ecuaciones horarias. -
Ejercicio - Tiro vertical. Análisis de gráficas y(t), v(t) y a(t) -
Ejercicio - Caída libre de una piedra. Ecuaciones horarias. Gráfica v(t). -
Ejercicio - Comparamos dos tiros verticales -
DINÁMICA
-
Leyes de la Dinámica, cortito y al pie 😉 -
Ejercicio - Repaso de MRU combinado con dinámica -
Ejercicio - Repaso de MRUV combinado con dinámica -
Ejercicio - Repaso de MRUV combinado con dinámica para un tren que se desplaza -
Ejercicio - Aplicación de la segunda ley de la dinámica a un cuerpo que asciende por la tensión de un soga -
TRABAJO, ENERGÍA Y POTENCIA
-
Trabajo de una fuerza💪 -
Energía y tipos de energía (cinética, potencial y mecánica)⚡ -
Ejercicio - Cálculo del trabajo con fuerzas aplicadas en diferentes direcciones -
Ejercicio - Aplicación de los teoremas Trabajo-Energía Cinética y Trabajo-Energía Mecánica -
Ejercicio - Aplicación del teorema de Trabajo-Energía a un auto que frena -
Ejercicio - Resolución combinada de dinámica y cinemática para el auto que frena -
Ejercicio - Integrador. Trabajo y energía -
Potencia - Ejercicio - Levantador de pesas -
Ejercicio - Gráfico de la fuerza resultante en función de la posición, y su relación con el trabajo -
Ejercicio - Trabajo de la fuerza resultante a partir del gráfico Fres(x) -
Ejercicio - Análisis de gráficas Fres(x) -
Ejercicio - Conservación de la energía mecánica - Esquiador que baja la montaña -
Ejercicio - Ejercicio de tiro vertical - Gráficos de energía -
Descomposición de fuerzas - Trigonometría - Ejemplo 1 -
Ejercicio - Fuerzas conservativas y no conservativas - Aplicación del teorema de conservación de la energía -
Descomposición de fuerzas - Trigonometría - Ejemplo 2 -
Ejercicio - Cálculo de fracción de energía mecánica perdida -
Ejercicio - Plano inclinado - Repaso de trabajo, fuerzas y energía -
Potencia💪 -
Ejercicio - Gráfico de potencia instantánea vs t
HIDRODINÁMICA DE FLUIDOS IDEALES
HIDRODINÁMICA DE FLUIDOS REALES 👑
GASES IDEALES - MEZCLA DE GASES - LEY DE DALTON - LEY DE HENRY - HUMEDAD
DIFUSIÓN Y ÓSMOSIS
TRANSMISIÓN DE CALOR - LEY DE FOURIER
SISTEMAS TERMODINÁMICOS - ENERGÍA INTERNA - EQUIVALENTE MECÁNICO DEL CALOR
SEGUNDO PRINCIPIO DE LA TERMODINÁMICA
Unidad 4 - Bases físicas de los fenómenos bioeléctricos
-
ELECTROSTÁTICA - LEY DE COULOMB - CAMPO ELÉCTRICO
- Ley de Coulomb
CAPACITORES
ELECTRODINÁMICA - ASOCIACIÓN DE RESISTENCIAS
Unidad 5 - Introducción al manejo de señales en los seres vivos
-
FENÓMENOS ONDULATORIOS - LUZ - SONIDO
- Fenómenos ondulatorios
ExaComunidad
Iniciá sesión o Registrate para dejar
tu
comentario.
Elias
24 de abril 20:43
Hola profe, en la guia el punto d) en las respuestas dice que el hombre pierde 2500J con una potencia media de 250w. como llegaron a esa conclusion?

Julieta
PROFE
25 de abril 11:39
Elias
25 de abril 11:46


Ayelen
15 de septiembre 0:56
Hola profe por q cuándo hace Energía potencial en B, la gravedad es positiva? Asumimos sistema de referencia hacia abajo o no es necesario ya hacerlo en estos ejercicios que no son ni caída libre ni tiro vertical?

Julieta
PROFE
16 de septiembre 10:22

Pamela
6 de mayo 9:42
Hola Juli!, no entendí como haces la relación del 12% del punto d, me lo explicarías por favor.

Julieta
PROFE
11 de mayo 3:50
Nos dicen que pierde energía, pero que de esa energía que pierde solamente una porción (un 12%) la pierde haciendo trabajo. El resto (100%-12% = 88%) la pierde de otra forma. Pero me preguntan la energía total acá, es decir, quieren saber cuánto es el 100% de la energía que perdió.
El dato de 12%, como es un porcentaje, significa 12 de cada 100. En este caso es energía, entonces por cada 100 J de energía perdida, 12 J se fueron en forma de calor. Esa sería una forma de verlo. Ahora bien, acá no tenés 12 J, sino que ese 12% representan 3000 J. Por lo tanto vas a plantear:
Si 12% de la energía perdida equivale a 3000 J, el 100% de la energía perdida ¿a cuánto equivale? Y hacés la cuenta.
Espero que se entienda